Academic Corporate Fusion

Python

Module 1: Introduction to Python

  1. History and features of Python

  2. Installing Python and IDEs (IDLE, VSCode, PyCharm)

  3. Python interactive shell and script mode

  4. Syntax, Keywords, Identifiers

  5. Input/Output and Comments

Module 2: Variables, Data Types & Operators

  1. Variables and Constants

  2. Data types: int, float, str, bool, list, tuple, dict, set

  3. Type casting

  4. Operators: arithmetic, relational, logical, bitwise, assignment

  5. Expressions and operator precedence

Module 3: Control Structures

  1. Conditional Statements: if, if-else, if-elif-else

  2. Looping: for, while, nested loops

  3. Loop control: break, continue, pass

  4. Use of range() function


Module 4: Functions and Recursion

  1. Defining and calling functions

  2. Function arguments: positional, keyword, default, variable-length

  3. Return values

  4. Scope: local and global

  5. Lambda functions

  6. Recursion and use cases

Module 5: Data Structures in Python

  1. List: creation, indexing, slicing, methods

  2. Tuple: immutability, indexing

  3. Set: uniqueness, operations

  4. Dictionary: key-value pairs, methods

  5. List comprehensions and dictionary comprehensions


Module 6: String Handling

  1. String creation and indexing

  2. String methods and formatting

  3. Slicing, searching, replacing, splitting

  4. String comparison


Module 7: File Handling

  1. File types: text and binary

  2. Reading and writing files

  3. Context manager (with statement)

  4. File operations (readline, read, write, append)

  5. Exception handling with file operations


Module 8: Exception Handling

  1. Syntax errors vs. exceptions

  2. Try, except, finally

  3. Else block with try

  4. Built-in exceptions

  5. Raising exceptions

  6. Creating custom exceptions


Module 9: Object-Oriented Programming in Python

  1. Classes and Objects

  2. Constructor (__init__)

  3. Instance and Class variables

  4. Methods: instance, class, static

  5. Inheritance and Polymorphism

  6. Encapsulation and abstraction

  7. super() and method overriding


Module 10: Modules and Packages

  1. Importing standard modules (math, datetime, random, etc.)

  2. Creating and using custom modules

  3. Python Package Index (PyPI)

  4. Virtual environments and pip


Module 11: Working with Libraries (Intro)

  1. NumPy for numerical operations

  2. Pandas for data manipulation

  3. Matplotlib for basic plotting

  4. Optional: tkinter for GUI applications


Module 12: Final Project / Mini Applications

  1. CLI-based calculator / to-do list

  2. File analyzer / log processor

  3. Simple data visualizer using Pandas and Matplotlib

  4. Quiz app or student record system

 

Call Now Button